For an up-to-date publication list, have a look at my Google Scholar page.
Embedded Universal Predictive Intelligence: a coherent framework for multi-agent learning
Alexander Meulemans*, Rajai Nasser*, Maciej Wolczyk, Marissa A. Weis, Seijin Kobayashi, Blake A. Richards, Guillaume Lajoie, Angelika Steger, Marcus Hutter, James Manyika, Rif A. Saurous*, João Sacramento*, Blaise Agüera y Arcas* Preprint, 2025
Emergent temporal abstractions in autoregressive models enable hierarchical reinforcement learning
Seijin Kobayashi*, Yanick Schimpf*, Maximilian Schlegel*, Angelika Steger, Maciej Wolczyk, Johannes von Oswald, Nino Scherrer, Kaitlin Maile, Guillaume Lajoie, Blake A. Richards, Rif A. Saurous, James Manyika, Blaise Agüera y Arcas, Alexander Meulemans*, João Sacramento* Preprint, 2025
MesaNet: Sequence Modeling by Locally Optimal Test-Time Training
Johannes von Oswald, Nino Scherrer, Seijin Kobayashi, Luca Versari, Songlin Yang, Maximilian Schlegel, Kaitlin Maile, Yanick Schimpf, Oliver Sieberling, Alexander Meulemans, Rif A. Saurous, Guillaume Lajoie, Charlotte Frenkel, Razvan Pascanu, Blaise Agüera y Arcas, João Sacramento Preprint, 2025
Multi-agent cooperation through learning-aware policy gradients
Alexander Meulemans*, Seijin Kobayashi*, Johannes von Oswald, Nino Scherrer, Eric Elmoznino, Blake A. Richards, Guillaume Lajoie, Blaise Agüera y Arcas, João Sacramento ICLR 2025
Learning probability distributions of sensory inputs with Monte Carlo Predictive Coding
Gaspard Oliviers, Rafal Bogacz, Alexander Meulemans PLoS Computational Biology, 2024
Learning to Extract Structured Entities Using Language Models
Haolun Wu, Ye Yuan, Liana Mikaelyan, Alexander Meulemans, Xue Liu, James Hensman, Bhaskar Mitra EMNLP 2024
Would I have gotten that reward? Long-term credit assignment by counterfactual contribution analysis
Alexander Meulemans*, Simon Schug*, Seijin Kobayashi*, Nathaniel Daw, Gregory Wayne NeurIPS 2023 (Spotlight presentation)
The least-control principle for learning at equilibrium
Alexander Meulemans*, Nicolas Zucchet*, Seijin Kobayashi*, Johannes von Oswald, João Sacramento NeurIPS 2022 (Oral presentation and award nomination)
Minimizing Control for Credit Assignment with Strong Feedback
Alexander Meulemans*, Matilde Tristany Farinha*, Maria R. Cervera*, João Sacramento, Benjamin F. Grewe ICML 2022
Credit Assignment in Neural Networks through Deep Feedback Control
Alexander Meulemans*, Matilde Tristany Farinha*, Javier García Ordóñez, Pau Vilimelis Aceituno, João Sacramento, Benjamin F. Grewe NeurIPS 2021 (Spotlight presentation) (Talk)
Challenges for Using Impact Regularizers to Avoid Negative Side Effects
David Lindner*, Kyle Matoba*, Alexander Meulemans* SafeAI - AAAI 2021
Neural networks with late-phase weights
Johannes von Oswald*, Seijin Kobayashi*, Alexander Meulemans, Christian Henning, Benjamin F. Grewe, João Sacramento ICLR 2021
Continual Learning in Recurrent Neural Networks
Benjamin Ehret*, Christian Henning*, Maria R. Cervera*, Alexander Meulemans, Johannes von Oswald, Benjamin F. Grewe ICLR 2021
A Theoretical Framework for Target Propagation
Alexander Meulemans, Francesco S. Carzaniga, Johan A.K. Suykens, João Sacramento, Benjamin F. Grewe NeurIPS 2020 (Spotlight presentation) (Talk)
*Equal contribution
